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Single Core



Compute Node Structure of 
BlueGene/L

Dual core
Dual FPU
Three-level cache 
memory hierarchy
Non-coherent L1 
cache 

32 KB, 64-way, RR
L2 & L3 $’s coherent



Data Source Issue

CPU  1CPU  0

DDR

L3$ + wc

L2$ L2$
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RF RF

16 B/pclk
8 B/pclk

16/3 B/pclk
write-combinewc

Prefetching
L3-to-L2 and DDR-to-L3 
“push”-based 
prefetching mask 
latency for stream 
accesses
L2-to-L1 prefetching is 
“pull”-based

Typical bottlenecks are 
The DDR-to-L3 path
The L2-to-L1 path
Outstanding L1 misses

Bottleneck analysis



The Dual FMA Unit

Many special instructions
Alignment is vital
Instruction Level Parallelism

SIMD (Length 2 Vectors)

Important for the compiler 
(or library developer) to 
exploit this (4 FLOPS/cycle)



Memory: DAXPY
Vector scaling in the form:

y = a*x + y
BLAS Level 1 operation
Memory-bound kernel: three accesses to memory for 
every computation:

Load of x[i] into p
Load of y[i] into q
Computation of r = a*p + q
Store of r into y[i]

There is no reuse of the elements loaded



DAXPY Bandwidth Utilization
Memory Bandwidth Utilization vs Vector Size for Different Implementations 

of DAXPY
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STREAM Performance
BG/L SIngle-Node STREAM Performance (444 MHz)

28 July 2003
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Out-of-box performance 
is 50-65% of tuned 
performance

Lessons learned in tuning 
will be transferred to 
compiler where possible

Comparison with 
commodity 
microprocessors is 
competitive

Machine Frequency STREAM FP peak Balance

(MHz) (MB/s) (Mflop/s) (B/F)

Intel Xeon 3060 2900 6120 0.474

BG/L 444 2355 3552 0.663

BG/L 670 3579 5360 0.668

AMD Opteron 1800 3600 3600 1.000



DGEMV

Two basic operations:
y+=Ax
y+=ATx

Different optimizations for the 
situations:

Data resides in L3 cache 
Data resides in L1 cache

There is some reuse of vector elements 
loaded



Memory Bandwidth Utilization for L3-optimal DGEMV kernel
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L1 and L3-optimal DGEMV Bandwidth 
Utilization

5.3 bytes/cycle
(L3 – bandwidth)

Two different kernels are 
needed to deal with data 
when:

-Data come out of L1

-Data come out of L3



Matrix Multiplication
Tiling for Registers (Analysis)

Latency tolerance (not bandwidth)
Take advantage of register count

Unroll by factor of two
24 register pairs
32 cycles per unrolled iteration
15 cycle load-to-use latency (L2 hit)

Could go to 3-way unroll if needed
32 register pairs
32 cycles per unrolled iteration
31 cycle load-to-use latency
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F1

M1
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8
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Recursive Data Format

Mapping 2-D (Matrix) to 
1-D (RAM)

C/Fortran do not map well

Space-Filling Curve 
Approximation
Recursive Tiling
Allows us to efficiently 
stream the data through 
the memory hierarchy



Recursive Data Format

Mapping 2-D (Matrix) to 
1-D (RAM)

C/Fortran do not map well

Space-Filling Curve 
Approximation
Recursive Tiling
Allows us to efficiently 
stream the data through 
the memory hierarchy

Register Set

Blocks
L1 Cache 

Blocks

L3 Cache 
Blocks

Dual Register 
Blocks



Programming Options
High Level

Compiler optimization to find SIMD 
parallelism (XL/IBM Only)

Currently uses Larsen-Amarasinghe “Superword
Level Parallelism” algorithm (PLDI’00) to detect 
and generate SIMD operations
Needs user input for specifying memory alignment 
and lack of aliasing

__alignx assertion
disjoint pragma

Currently limited to parallel SIMD and memory 
operations



Programming Options
Low Level

In-line assembly
User responsible for instruction selection, register 
allocation, and scheduling

Dual FPU intrinsics
Complex data type used to model pair of double-precision 
numbers that occupy a (P, S) register pair
User responsible for instruction selection
Compiler responsible for register allocation and 
scheduling
Supported in C99 and Fortran (not in C++)



Dual Core



Dual Core

Why?
It’s a effortless way to double your 
performance



Dual Core

Why?
It exploits the architecture and may 
allow one to double the performance of 
their code in some cases/regions



Dual Core

How?
grip=co_start(copro,func,args);

copro: opaque object
func: function pointer
args: Void ptr to arguments

Must be flushed on originator (core 0)
Must be invalidated on receiver (core 1)

co_join(copro,grip);



Dual Core
When …

Your computation is not L2 or above memory-
bound

Those elements are shared between cores
There is a good deal of (independent) 
computation to perform

Process fork is relatively cheap, but not free
The amount of altered memory is small

Washing out the caches takes cycles
Blind device (4200 obs. cycles vs. 4096 opt. cycles)

The computation is “almost” L1 resident
Two cores: twice as much L1



Matrix Multiplication
Tiling for Dual Cores

Lack of coherence in 
L1 dictates split of C
B “streams” through 
L1: split it to control 
stream traffic
Tile for

Dual core
L3
L1
Registers 
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120

120

120



Single-Node DGEMM 
Performance at 92% of Peak

Single-node DGEMM (444 MHz)
18 July 2003
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Near-perfect scalability (1.99×) going from single-core to 
dual-core
Dual-core code delivers 92.27% of peak flops (8 flop/pclk)
Performance (as fraction of peak) competitive with that of 
Power3 and Power4

92.27%



Points to consider

Code fusion can enable one to
Perform a data re-format and/or make effective 
use of both cores for an operation

The architecture is very rich
Corner cases have to be handled
Can be very powerful
Helpful in understanding performance
Semi-esoteric improvements exist

Fine-grained L1 data cache control



What More Could We Want?
Open up the cache architecture more

It would be good if the library writer could specify that a 
particular access would be a miss in L1, or a hit in L3, for 
example
Expose more microarchitectural constraints to the compiler
Example: maximum number of L1 cache misses before stall

Better register scheduling algorithms
Currently, we have observed excessive spills when using 
close to all 32 registers



Thanks to …

Leonardo Bachega: BLAS-1, performance results

Sid Chatterjee: Coprocessor, BLAS-1

Fred Gustavson, James Sexton: Data 
structure investigations, design, sanity tests
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Performance Scales Linearly 
with Clock Frequency
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Measured performance of DGEMM and STREAM scale 
linearly with frequency

DGEMM at 650 MHz delivers 4.79 Gflop/s
STREAM COPY at 670 MHz delivers 3579 MB/s
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